

Why do we need prediction models?

- key elements for the individual risk assessment:
 - Predicting patients at risk for graft loss, complications (rejection, infection, malignancy) and death,
 - Estimating time to event: graft loss, complications, death
 - Aim is to avoid event or early detection
 - Importance for managing Immunosuppression, medication, psychosocial issues, preparation & planning for dialysis, retransplant, etc.
- Use as surrogate endpoints for group comparisons in clinical trials

2nd Int'l NephroCAGE Symposium, Aug 16, 2022

Klemens Budde, Charité Berlin

How do we manage patients now?

Rely on clinical judgement with known risk factors

- Donor factors such as age, sex, comorbidities, medication
- Recipient age, sex, weight, cause of death/living donor, comorbidities etc.
- Transplant factors such as HLA mismatch, ischemia times, delayed graft function
- Immunosuppression, co-medication
- eGFR, GFR slope
- Proteinuria
- HLA antibodies
- Manage complications, when they occur

2nd Int'l NephroCAGE Symposium, Aug 16, 2022

Klemens Budde, Charité Berlin

Independent risk factors for graft loss in the ALERTtrial

Clincal consequences: **Stopp Smoking** treat hypertension diabetes and lipids look at proteinuria + creatinine

TABLE 4. Independent risk factors for renal graft loss. renal graft loss or doubling of serum creatinine, and renal graft loss or doubling of serum creatinine or death (Cox

Risk factor	Hazard ratio (95% CI)	P value
Renal graft loss		
Proteinuria (per 1-g/24-hr increase)	1.76 (1.55–1.98)	< 0.0001
Serum creatinine (per 100- μ M increase)	4.37 (3.47–5.52)	< 0.0001
Time since last transplant (yr)	1.06 (1.01-1.11)	0.027
Renal graft loss or doubling of serum creatinine		
Proteinuria (per 1-g/24 hr increase)	1.79 (1.60–2.01)	< 0.0001
Scaled creatinine (per $100-\mu M$ increase)	3.43 (2.74–4.29)	< 0.0001
Smoking	1.77 (1.21-2.60)	0.003
Pulse pressure (per 10 mm Hg)	1.12 (1.02-1.23)	0.021
Treatment for rejection	1.35 (0.96-1.89)	0.086
Renal graft loss or doubling of serum creatinine or death		
Proteinuria (per 1-g/24 hr increase)	1.59 (1.43–1.7)	< 0.0001
Serum creatinine (per 100- μ M increase)	2.74 (2.24–3.35)	< 0.0001
HDL (mM)	0.74 (0.54-1.03)	0.0747
Age (yr)	1.03 (1.01-1.04)	< 0.0001
Pulse pressure (per 10 mm Hg)	1.09 (1.01-1.17)	0.03
Diabetes mellitus	1.78 (1.32-2.41)	0.0002
Smoking	1.56 (1.14-2.13)	0.0053
Time since last RTx (yr)	1.05 (1.01-1.09)	0.0097
No. of RTx	1.51 (1.18-1.95)	0.0011

Graft loss:

Proteinuria creatinine time since Tx

+ doubling creatinine

Smoking pulse pressure rejection

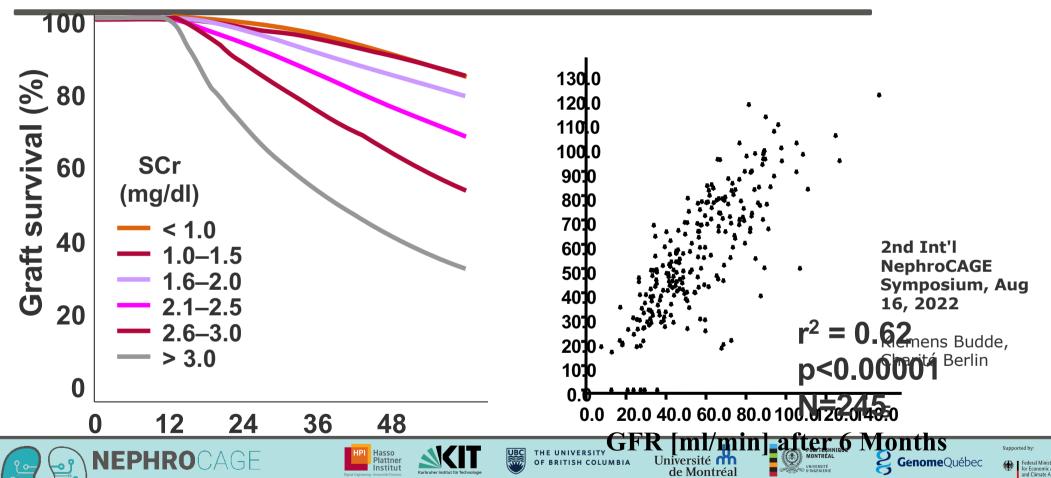
+ death:

HDL

age

diabetes No. of RTx 2nd Int'l **NephroCAGE** Symposium, Aug 16, 2022

Klemens Budde, Charité Berlin



Serum creatinine after 1 year: a good predictor for graft-loss?

improved kidney transplantation outcome

International NephroCAGE Symposium, Aug 16, 2022

CHARITÉ

Centre universitaire de santé McGill

CHUM

McGill University Health Centre

Genome

^{্লি} PIRCHE

Surrogate Endpoints for Late Kidney Transplantation Failure

Maarten Naesens^{1*}, Klemens Budde², Luuk Hilbrands³, Rainer Oberbauer⁴, Maria Irene Bellini⁵, Denis Glotz⁶, Josep Grinyó⁷, Uwe Heeman⁸, Ina Jochmans¹, Liset Pengel⁹, Marlies Reinders¹⁰, Stefan Schneeberger¹¹, Alexandre Loupy¹²

- Limitation of single parameters such as eGFR, Proteinuria, Histology, DSA and combined functional markers (e.g. eGFR+proteinuria) due to variability, interference with drugs, unclear cut-off values, controversial results....
- Potential of composite scores, but frequent lack of external validation and rigorous prospective studies....

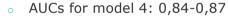
TABLE 4 Value of composite scores as surrogacy or long-term rate ury val [9,14,71–76]

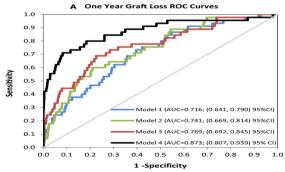
Study	Kasiske et al., 2010 [71]	Foucher et al., 2010 [72]	Moore et a/ co11 [7 3]	Schuntzler a , , 2012 []4]	Shabir et al., 2014 [74]; Gonzales et al., 2016 [75]	Gonzales <i>et al.</i> , 2016 [75]	Prémaud <i>et al.</i> , 2017 [76]	Loupy <i>et al.</i> , 2019 [9]
Parameter	USRDS Pisk Pression ool	K FS	LOTESS Composite Risk Score	USRDS Predictive Model	Birmingham Risk Score	Birmingham- Mayo Histology- Based Model	AdGFS	iBox Risk Prediction Score
Development set	USRI (regi v. lata (2. 59,091)	Multicentre French registry (N=2169)	Multicentre national cohort study (N=2763)	USRDS registry data (N=87,575)	Single-center UK data (N=651)	Single-center US data (N=1465)	Single-center French data (N=664)	French multicentre cohort (N=4000)

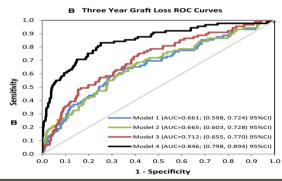
Naesens M et al Transplant International 2022

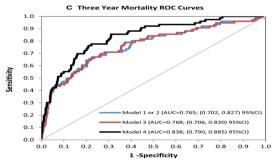
2nd Int'l **NephroCAGE** Symposium, Aug 16, 2022

Klemens Budde, Charité Berlin





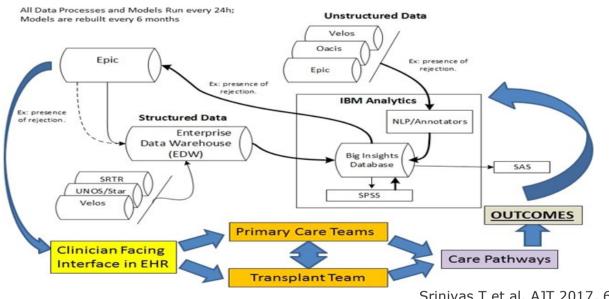



Example for an individual prediction model

- Prediction of graft loss and mortality at 1 and 3 years
- 10% 3-year graft loss in 891 patients (2007-2015).
- Firth multivariable logistic regression
- eGFR trajectory: the absolute value of the slope from max. eGFR to eGFR at day 365
 - Data Model 1: UNOS only.
 - Data Model 2: UNOS + Transplant database.
 - Data Model 3: UNOS + Transplant database + EHR comorbidity.
 - Data Model 4: UNOS + Transplant database + EHR comorbidity + EHR posttransplant trajectory + natural language processing (Banff scores and vital signs)

2nd Int'l **NephroCAGE** Symposium, Aug 16, 2022

Klemens Budde, Charité Berlin



Integration of prediction model into clinic

Inclusion of eGFR trajectories and dynamically evolving structured and unstructured longitudinal patient-level data using Big Data approaches improves the accuracy of prediction of graft loss and mortality

2nd Int'l **NephroCAGE** Symposium, Aug 16, 2022

Klemens Budde, Charité Berlin

8

Srinivas T et al. AJT 2017, 671-681

Data & Model

- Baseline: TBase data
 - includes patients of ~20 years
 - general: demographics, medications, diagnosis, ...
 - visits: vitals, clinical notes
 - lab data, hospitalizations
- >1400 patients, >100,000 data points
- Data Characteristics:
 - real life: noisy, unbalanced
- Method: Gradient Boosted Regression Trees
- about 1200 different features
- modelling of data complex, missing noisy data

Roland Roller et al. under revision

2nd Int'l **NephroCAGE** Symposium, Aug 16, 2022

Klemens Budde, Charité Berlin

Data & Model

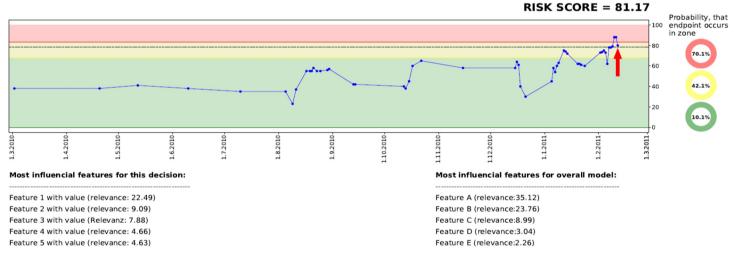
Results on retrospective data for 90, 180, and 360 days

	days	Our Model	Esteban
	90	0.80 (0.04)	_
Rejection	180	0.82 (0.03)	0.778(0.01)
Ū	360	0.80(0.04)	0.768 (0.01)
	90	0.93 (0.02)	-
Tx-Loss	180	0.94 (0.02)	0.821 (0.01)
	360	0.95 (0.01)	0.814 (0.01)
	90	0.80 (0.01)	-
Infection	180	0.78(0.01)	-
	360	0.77 (0.01)	-

2nd Int'l NephroCAGE Symposium, Aug 16, 2022

Klemens Budde, Charité Berlin

Roland Roller et al. under revision



Data & Model visualization

- A dashboard with risk score, traffic light system and feature relevance
- Overview about the development of risk scores of one patient

2nd Int'l NephroCAGE Symposium, Aug 16, 2022

Klemens Budde, Charité Berlin

Roland Roller et al. under revision

iBox prediction model

- Development of a robust risk stratification model for better prediction and endpoint in trial design
- 7 European and 3 American centers with 7557 pts
- 7.12 years median follow-up
- 1067 (14,1%) graft failures
- Derivation cohort: 4000 consecutive French patients
- Validation cohort: 3557 patients from Europe and North America
- Transplanted between 2002 and 2014
- >100 prognostic factors for integrated data analysis
- For 3, 5, and 7-year prediction at year 1 post Tx
- Final hazard ratios from Cox model with 8 prognostic variables

A Loupy et al BMJ 2019: 366: 14923

2nd Int'l NephroCAGE Symposium, Aug 16, 2022

Klemens Budde, Charité Berlin

iBox - in- and output

	Output		
Additional			
Banff lesions grading:	Individual patient		
g,i,t,ptc,cg,IFTA	prediction of allograft		
Histology diagnoses	survival 3, 5 and 7 years		
• Anti HLA DSA (MFI)	after evaluation time		
	 Banff lesions grading: g,i,t,ptc,cg,IFTA Histology diagnoses 		

Prediction system for risk of allograft loss in patients receiving kidney transplants: international derivation and validation study

- Loupy, Aubert, Orandi, et al., BMJ 2019;366:14923
- http://dx.doi.org/10.1136/bmj.l4923

2nd Int'l NephroCAGE Symposium, Aug 16, 2022

Klemens Budde, Charité Berlin

iBox prediction model

- Excellent c-statistics (AUC: 0,79-0,83)
- Similar values in validation cohorts
- Confirmed in 3 randomized controlled trials
- Dynamic prediction beyond the first year useful
- Score responsive to treatment changes (via eGFR/Proteinuria)
- Histology improved the model only marginally

Limitations

- Nomogramm and website (were) available, but now commercialized
- Prognostic, but how good for prediction in the individual??
- Not used in prospective trials
- HLA Mismatch, donor factors, DGF and rejection not in model
- Death excluded

2nd Int'l NephroCAGE Symposium, Aug 16, 2022

Klemens Budde, Charité Berlin

External Validation of the Abbreviated Ibox Scoring System at One-Year Post Kidney Transplant as a Surrogate Endpoint for Death-Censored Graft Survival

A. Klein¹, L. Kosinski², R. Muse², A. Loupy³, O. Aubert³, G. Divard³, M. Stegall⁴, I. Helanterä⁵, W. E. Fitzsimmons¹, I. O'Doherty¹

¹Transplant Therapeutics Consortium, Critical Path Institute, Tucson, AZ, ²Critical Path Institute, Tucson, AZ, ³Paris Transplant Group, Paris, France, ⁴Mayo Clinic, Rochester, MN, ⁵Helsinki University Hospital, Helsinki, Finland

Meeting: 2022 American Transplant Congress

Abstract number: 464

- CNI and CNI-free pts.
- acceptable c-statistics (AUC: 0,70-0,84)
- Potential as a surrogate endpoint for trials with group comparisons
- Public availability

- Transplant Therapeutics Consortium
- new version without biopsy @1 year post Tx
- surrogate endpoint for 5-year death-censored graft survival after kidney transplantation
- 4 data sets: 2 RCTs, 2 observational datasets
- CNI and CNI-free patients
- acceptable c-statistics (AUC: 0,70-0,84)

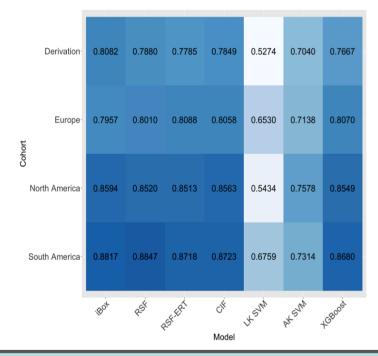
Dataset	Subjects	C- statistic	Poisson Calibration				
			Observed graft loss	Predicted graft loss	Observed / Predicted	z score for Observed / Predicted	P-value
Observational	841	0.81	41	40.61	1.01	0.06	0.95
Mayo Clinic Rochester	344	0.84	21	16.19	1.30	1.19	0.23
Helsinki University Hospital	497	0.77	20	24.41	0.82	-0.89	0.37
RCTs	872	0.74	38	41.74	0.91	-0.58	0.56
BENEFIT RCT	515	0.70	15	18.77	0.80	-0.87	0.39
BENEFIT-EXT RCT	357	0.78	23	22.97	1.00	0.01	1.00

2nd Int'l NephroCAGE Symposium, Aug 16, 2022

Klemens Budde, Charité Berlin

Predicting Long Term Kidney-Allograft Failure: Machine Learning vs Traditional Statistical Models

A. Truchot¹, M. Raynaud¹, c. lefaucheur², O. Aubert¹, A. Loupy¹


¹Paris Transplant Group, Paris, France, ²Hôpital Saint-Louis, Paris, France

Meeting: 2022 American Transplant Congress

Abstract number: 538

4000 patients in derivation cohort and 5054 patients in validation cohort

- 1165 graft losses after 5,2 years
- 24 parameters for 6 ML models for 7 year graft survival vs. iBox
- risk assessment after 0,98 years
- iBox slightly better

2nd Int'l **NephroCAGE** Symposium, Aug 16, 2022

Klemens Budde, Charité Berlin

FAILING ALLOGRAFTS DATA DRIVEN PATTERN RECOGNITION

Cohorts: 8,668 kidney transplant recipients

12 centers in Europe and the USA between 2001 and 2016.

Inclusion criteria:

- Age > 18 years
- Solitary kidney transplants
- At least two eGFR measures after 1-year post-Tx

1-year post Tx (n=8,668)

- Recipient parameters
- Transplant characteristics
- Anti-HLA DSA monitoring
- Biopsy phenotype
- Proteinuria / C ratio
- Treatment

Raynaud et al, KI 2021

Number Cohort of Centers involved patients Necker, Saint-Louis, Development 4.140 Foch, Toulouse, Lyon cohort and Nantes European Leuven, Montpellier validation 2.688 and Nancy cohort Cedars-Sinai, Los North-Angeles **American** Johns-Hopkins, 1,840 validation Baltimore, Mayo cohort clinic. Rochester

8.668 patients. 109.049 eGFR Median follow-up: 6-

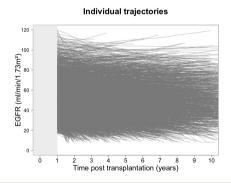
years post transplantation (IQR 4-9) 2nd Int'l **NephroCAGE** Symposium, Aug 16, 2022

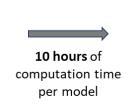
Klemens Budde, Charité Berlin

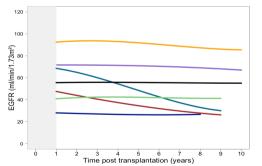
17

NEPHROCAGE

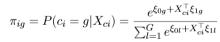
German-Canadian consortium on Al for improved kidney transplantation outcome 2nd International NephroCAGE Symposium, Aug 16, 2022


Supported by:


FAILING ALLOGRAFTS DATA DRIVEN PATTERN RECOGNITION


Latent Class Mixed Model (LCMM)

- Unsupervised method adapted to repeated measurements allowing the detection of underlying (latent) groups in longitudinal data.
- Statistical parameters are tested to obtain the best profiles of eGFR trajectories.
- LCMM associates logistic regression and a mixed model.

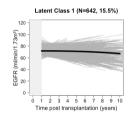

$$Y_{ij} = X_{Li}(t_{ij})^{\top} \beta + Z_i(t_{ij})^{\top} u_i + w_i(t_{ij}) + \epsilon_{ij}$$

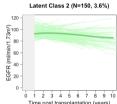
2nd Int'l NephroCAGE Symposium, Aug 16, 2022

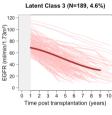
Klemens Budde, Charité Berlin

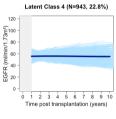
18

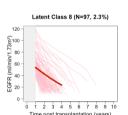
Project-Lima et al Tournal of statistical Software, 2017

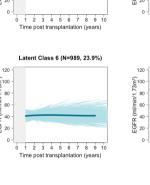


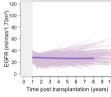


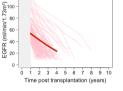



FAILING ALLOGRAFTS DATA DRIVEN PATTERN RECOGNITION




Latent Class 5 (N=401, 9,7%)





Latent Class 7 (N=729, 17.6%)

2nd Int'l **NephroCAGE** Symposium, Aug 16, 2022

Klemens Budde, Charité Berlin

19

Raynaud et al, KI 2021

eGFR

slope per

year

-0.75 (3.10)

-1.04 (3.37)

-8.88 (3.44)

-0.13 (2.51)

-5.38 (2.46)

0.12 (2.40)

-2.97 (6.00)

-23.9 (8.76)

eGFR

baseline

71.6 (10.4)

91.6 (11.4)

70.1 (15.9)

55.6 (8.11)

48.2 (10.3)

41.0 (7.1)

28.4 (6.4)

58.0 (18.5)

Latent

class

#2

#3

#4

#5

#6

#8

Functional

correspondence

High baseline,

stable Very high baseline,

slightly decreasing

High baseline,

fast declining

Middle

baseline,

stable

Low baseline,

decreasing

Low baseline,

stable

Very low

baseline, slow

decreasing Middle

baseline,

fast declining

Multidimensional Prognostication Tool for Kidney Transplant Patient Survival: The Mortality Mbox

C. Debiais-Deschamps¹, O. Aubert¹, D. Yoo¹, G. Divard¹, C. Lefaucheur², C. Legendre³, A. Loupy¹

¹Université de Paris, PARCC, INSERM, Paris, France, ²Service de Transplantation Rénale, AP-HP, Hôpital Saint-Louis, Paris, France, ³Service de Transplantation Rénale Adulte, AP-HP, Hopital Necker, Paris, France

Meeting: 2022 American Transplant Congress

Abstract number: 1791

- 1446 patients from France, transplanted 2004-2014
- 309 patients died after 7,6 years
- 160 parameters from Tx to 1 year post Tx
- Multivariable Cox model plus Lasso regression
- 19 predictors selected
- Mortality score AUC 0,81

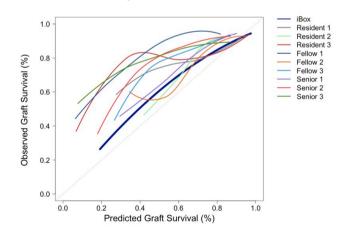
2nd Int'l NephroCAGE Symposium, Aug 16, 2022

Klemens Budde, Charité Berlin

20

की PIRCHE

Computer vs Human-Based Prediction and Stratification of the Risk of Long-Term Kidney Allograft Failure


G. Divard¹, M. Raynaud¹, V. Tataputii², B. Abdalla³, C. Legendre¹, C. Lefaucheur¹, O. Aubert¹, A. Loupy¹

¹Paris Transplant Group, Paris, France, ²NYU Langone Health, New York, NY, ³UCLA, Los Angeles, CA

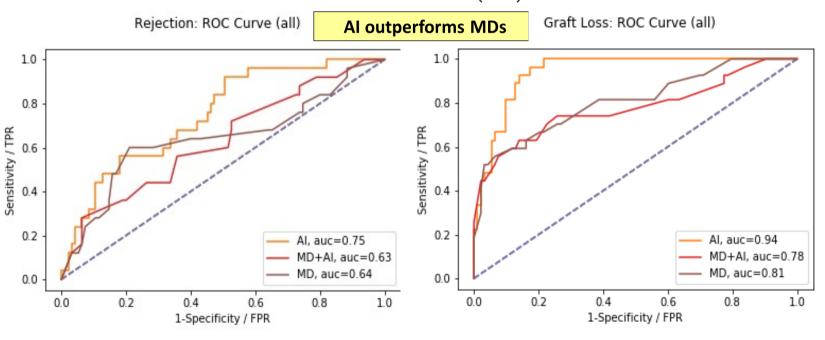
Meeting: 2022 American Transplant Congress

Abstract number: 298

- 400/4000 random patients, 84 (21%) graft losses after 7,2 years
- 44 parameters during first year
- 9 physicians
- Predicting allograft survival at 1 year
- iBox AUC of 0,79 with calibration error of 5,8%
- Physicians overestimated graft failure with higher calibration error

2nd Int'l **NephroCAGE** Symposium, Aug 16, 2022

Klemens Budde, Charité Berlin



Study results:

Al versus Medical Doctor (MD) versus Al+MD

2nd Int'l **NephroCAGE** Symposium, Aug 16, 2022

Klemens Budde, Charité Berlin

Summary:

"Prediction is very difficult, especially if it's about the future!"

Niels Bohr

2nd Int'l NephroCAGE Symposium, Aug 16, 2022

Klemens Budde, Charité Berlin

Thank you for your attention!

2nd Int'l **NephroCAGE** Symposium, Aug 16, 2022

Klemens Budde, Charité Berlin

